Application of a Multi-dimensional Limiting Process to Central-Upwind Schemes for Solving Hyperbolic Systems of Conservation Laws
نویسندگان
چکیده
In this paper, we study semi-discrete central-upwind difference schemes with a modified multidimensional limiting process (MLP) to solve two-dimensional hyperbolic systems of conservation laws. In general, high-order central difference schemes for conservation laws involve no Riemann solvers or characteristic decompositions but have a tendency to smear linear discontinuities. To overcome this drawback of central-upwind schemes, we use a multi-dimensional limiting process that uses multi-dimensional information for slope limitation to control the oscillations across discontinuities for multi-dimensional applications. Some numerical results are provided to demonstrate the performance of the proposed scheme.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملCentral-Upwind Schemes on Triangular Grids for Hyperbolic Systems of Conservation Laws
We present a family of central-upwind schemes on general triangular grids for solving two-dimensional systems of conservation laws. The new schemes enjoy the main advantages of the Godunov-type central schemes—simplicity, universality, and robustness and can be applied to problems with complicated geometries. The “triangular” central-upwind schemes are based on the use of the directional local ...
متن کاملHigh-order central-upwind schemes for hyperbolic conservation laws
We study central-upwind schemes for systems of hyperbolic conservation laws, recently introduced in [A. Kurganov, S. Noelle and G. Petrova, SIAM J. Sci. Comput., 23 (2001), pp. 707–740]. Similarly to the staggered central schemes, these schemes are central Godunov-type projection-evolution methods that enjoy the advantages of high resolution, simplicity, universality, and robustness. At the sam...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملMultigrid Methods for Systems of Hyperbolic Conservation Laws
In this paper, we present total variation diminishing (TVD) multigrid methods for computing the steady state solutions for systems of hyperbolic conservation laws. An efficient multigrid method should avoid spurious numerical oscillations. This can be achieved by designing methods which preserve monotonicity and TVD properties through the use of upwind interpolation and restriction techniques. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2016